If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8+9w+w^2=0
a = 1; b = 9; c = +8;
Δ = b2-4ac
Δ = 92-4·1·8
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-7}{2*1}=\frac{-16}{2} =-8 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+7}{2*1}=\frac{-2}{2} =-1 $
| 80000(x)(2)=90000 | | 3h-49=8 | | 3-2x-(6x-9)=2 | | 6x-1+4x=5x-7 | | x+(x×x)+(x×x×x)=119 | | 36=b−22 | | 3x+30=x+54 | | 3h/8-11=213/64 | | 2(x+7)=19x= | | z−2=9 | | 80,000(2)(x)=90,000 | | 7x+3=11x-25 | | 10n^2-3n^2=14n+11n | | 8(b+1)+4=3(2b-8)+b | | 24x^2-61x+18=0 | | -7x+10+9x+17=-2 | | 3x+4x-20=190 | | 2u=3.5 | | x-32=180 | | 14=d+2 | | (x-7)^2=163 | | 8t^2-3t^2=15t+11t | | ∑30n=1(2n−17) | | g−15=2 | | -16+8v=8(2+5v) | | 8x-5=10x-7 | | 8x-4x–11=7x+4 | | 0.53n+5/n=3/n=-3 | | 4(×-3)-20=5(x-5) | | (3x-2)/2-(4x-5)/3=2 | | 23-2x=7(x-7) | | 7+18m=35+11 |